Pixelwise Local Binary Pattern Models of Faces Using Kernel Density Estimation

نویسندگان

  • Timo Ahonen
  • Matti Pietikäinen
چکیده

Local Binary Pattern (LBP) histograms have attained much attention in face image analysis. They have been successfully used in face detection, recognition, verification, facial expression recognition etc. The models for face description have been based on LBP histograms computed within small image blocks. In this work we propose a novel, spatially more precise model, based on kernel density estimation of local LBP distributions. In the experiments we show that this model produces significantly better performance in the face verification task than the earlier models. Furthermore, we show that the use of weighted information fusion from individual pixels based on a linear support vector machine provides with further improvements in performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

**Background modeling using adaptive pixelwise kernel variances in a hybrid feature space** DRAFT COPY

Recent work on background subtraction has shown developments on two major fronts. In one, there has been increasing sophistication of probabilistic models, from mixtures of Gaussians at each pixel [8], to kernel density estimates at each pixel [1], and more recently to joint domainrange density estimates that incorporate spatial information [7]. Another line of work has shown the benefits of in...

متن کامل

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

Comparison of Background Subtraction Techniques Under Sudden Illumination Changes

This paper investigates three background modelling techniques that have potential to be robust against sudden and gradual illumination changes for a single, stationary camera. The first makes use of a modified local binary pattern that considers both spatial texture and colour information. The second uses a combination of a frame-based Gaussianity Test and a pixel-based Shading Model to handle ...

متن کامل

Facial Memory Is Kernel Density Estimation (Almost)

We compare the ability of three exemplar-based memory models, each using three different face stimulus representations, to account for the probability a human subject responded “old” in an old/new facial memory experiment. The models are 1) the Generalized Context Model, 2) SimSample, a probabilistic sampling model, and 3) DBM, a novel model related to kernel density estimation that explicitly ...

متن کامل

Mandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis

Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009